© Atlantic Oase CHOOSING THE PERFECT PUMP

All pumps have an optimal range, measured in feet of head, in which they run best and last longest. Calculating the Total Dynamic Head enables you to select just the right pump, running in its Best Efficiency Range, to provide the desired flow at the right head.

1. PICK A LOOK & SPECIFY A FLOW

LOW FLOW ≈ 750 GPH PER FOOT

FLOW

(GPH)

100

200

300

400

500

750

1000

1250

1500

2000

3000

4000

5000

6000

8000

10.000

12.000

15,000

18,000

MEDIUM FLOW ≈ 1500 GPH PER FOOT

CHART A FRICTION LOSS PER FOOT OF TUBING

1

0.01

0.02

0.04

0.06

0.14

0.21

0.33

0.43

0.94

2.07

3/4"

0.01

0.05

0.10

0.18

0.27

0.50

0.84

1.20

1/2"

0.10

0 39

0.83

1.00

2.23

TUBING SIZE

11/4"

0.01

0.02

0.04

0.07

0.10

0.15

0.26

0.52

1.10

1.80

Width of the Waterfall to find the Recommended Flow.

Choose the appearance you would like for your waterfall from the suggested choices to the left. Multiply the corresponding GPH Per Foot by the desired

2. DETERMINE FRICTION LOSS

HIGH FLOW

≈ 2250+ GPH PER FOOT

2"

0.01

0.02

0.09

0.15

0.22

0.38

0 59

0.84

0.10 0.03

0.22 0.05

3"

0.01

0.02

0.03

0.05

0.07

0.10

0.15

0.25

11/2"

0.02

0.03

0.04

0.06

0.43

0 6

0.96

1.77

2.1 FIND TUBING SIZE & FRICTION

Find the dark blue cell in the row that corresponds with the Recommended Flow (GPH) in CHART A. The column indicates the recommended tubing size and the number in the cell is the Friction Loss in every foot of tubing. Keep Friction Loss low for greatest flow.

To find the Friction Loss of existing systems, estimate the flow through the actual tubing size used.

Example: GPH: 3000 Friction Loss: 0.05 Tubing: 2"

*For flows over 20,000 gph or lengths over 100 ft, please contact us.

2.2 ADD FRICTION IN FITTINGS

Add the equivalent lengths of all the fittings in the system, from CHART B, to the tubing length from pump to falls to find the Equivalent Tubing Length.

Example: 8.5 (90°) + 4.5 (M/FA) + 19.0 (Check Valve) = 32 (Fitting Length in Feet)

2.3 CALCULATE FRICTION HEAD

Multiply the Equivalent Tubing Length in feet by the Friction Loss in the dark blue cell from CHART A to find the Friction Head of the system.

3. FIND THE TOTAL DYNAMIC HEAD

Add the Friction Head in Feet to the Vertical Head to find TDH. Vertical Head is the height in feet from the surface of the water the pump will be sitting in, to the highest point the water is pumped to.

4. CHOOSE YOUR PUMP

Locate the column representing the Total Dynamic Head (TDH) on the pump chart (opposite page). Find the pump that provides the required flow at that TDH. If the chart gives you a choice of more than one pump, check for the type that best fits your application, then check for the lowest wattage, to save on operating costs.

CHART B

FRICTION IN EQUIVALENT FEET OF STRAIGHT PIPE

PVC	FITTING SIZE										
FITTINGS	³ /4 ¹¹	1"	1 ¼″	1 ½"	2"	3"					
Std Elbow, 90 degree	4.5	5.5	7.0	7.5	8.5	11.0					
Std Elbow, 45 degree	1.0	1.5	2.0	2.5	3.0	4.0					
Male / Female Adapter	1.5	2.0	3.0	3.5	4.5	6.5					
Tee (Straight Thru)	2.5	3.0	5.0	6.0	8.0	12.0					
Tee (Thru Branch)	5.5	7.0	9.0	10.0	12.0	17.0					
Swing Check Valve	9.0	11.0	13.0	15.0	19.0	27.0					

COMPREHENSIVE PUMP CHART

	MODEL	WATTS	MAX FLOW		5' 	10'	15'	20'	25'	30'	3	5' 4 	.0' 4 	ŀ5' 5 ∎	50'5 ∎	5' (∎	50'
X AQUAMAX UM ECO CLASSIC WATERFALL	45421	70	1650		1350	800											T
	45422	130	2300		1900	1420	700							İ			Π
	45423	170	3700		2650	2100	1200							İ	İ		П
	45424	230	5150		4200	3300	2280	700									П
	45425	460	6600		5600	4500	3150	1720						İ			П
	45426	600	8000		6600	5300	3950	2790	1620					İ			Т
	40437	45	1200	F	1000												П
	57620	70	1900		960												П
	57621	110	2700		1700												П
	57623	150	3600		2400	1100											П
	87581	60	2500	F	1585	795											П
DAMA PREM	87582	100	3500		2380	1425	395							İ			Т
AQI ECO F	87583	140	4500		3330	2140	870										П
	87584	160	5500	İF	4120	2615	1100							İ			Π
	TT1500	101	1640		1060	350								İ			П
TT-SERIES	TT2000	115	2640		1760	715								İ	İ		Т
	TT3000	173	3000		2180	1215	475							İ	İ		П
	TT4000	230	4490		3330	1785	700							İ	ĺ		Π
	TT5000	310	5150	I	4255	3170	1615										Π
	тт6000	334	6600	F	4915	3395	1750										Π
	TT7500	520	7650		6300	4640	2860	1250									Π
	тт9000	587	8800	F	7470	5990	4260	2595									Π
MAX	57875	440	7300	F	6100	5000	3950	2600	850								Π
PERT	57963	700	11500	IF	10000	8400	6850	5350	3900	1550							Π
CO EX RIUS	57964	440	6800	T	6700	5825	5200	3900	2825	1575							Π
E(57978	700	11500		10300	9000	7450	6025	4600	3000							Π
IAX /	88675	95	3010	F	2400	150											Π
QUAN	88676	240	5100		3600	2400	150										Π
12 VC IUS A	88677	440	7100		5050	3000	325										Π
INARI	88678	700	5300	IF	4200	3175	2150	1200									Π
A(PAF-20	360			2800	1950	1080							İ			Π
RIES	PAF-25	545		Í	3900	3150	2300										Π
AF-SE	PAF-40	650		Í	1	4350	3570	2700									Π
2	PAF-75	900		Í	1	1	4560	3750	2 830		1						Π
A-SERIES	A-05	645					2500	2155	1875	1455	9:	5					Π
	A-05L	725		iF	1	4320	3600	2820	1920		, i						Π
	A-21	1060					1	4335	3770	3140	240	00		i	i		П
	A-31	1160			1	8150	6830	5535	4120	253 5							\dagger
	AN-32	2155								9180	792	20 66	00 _52	20	i		
IES	L-305	710	11400		10380	7380											П
L-SER	L-310	1105	14200		13500	10560	7380										\top
	*All flows in c	gallons per l	nour (GPH)		Recomm	nended Op	erating Ran	ige	Best Ef	ficiency Ra	nge		o Not Ope	rate Range	 ?		

AQUAMAX

ECO EXPERT

12 VOLT

WHAT YOU NEED TO KNOW ABOUT PUMPS & PLUMBING

FLOW, PRESSURE & THE BEST EFFICIENCY POINT

All pumps have an optimal range of flow, measured in GPH, and pressure, measured in feet of Head. Pumps operating within their Recommended Operating Range will run better and last longer. Pumps forced to run outside their operating range will tend to fail sooner. Every waterfall needs a certain amount of flow at a certain amount of pressure to achieve a desired effect. Knowing the feature's Recommended Flow in GPH, and its Total Dynamic Head in feet, lets you select the right pump, running in its optimal range, providing the desired flow at the right head.

AREA VS. CIRCUMFERENCE

Though it might seem that two 1.5" pipes would deliver the same amount of water as one 3" pipe, appearances are deceiving. Flow is a function of area; calculating their areas proves FOUR 1.5" pipes equal one 3" pipe.

But friction is a function of circumference. Four 1.5" pipes have TWICE the surface area of the 3" pipe, and consequently, twice the friction loss. To deliver equal flow, the pipes must have equivalent friction losses.

At 8000 GPH, friction loss through 3" pipe is .05 feet of head per foot of tubing. Through four 1.5" pipes at 2000 GPH each, friction doubles to .10. It takes SIX 1.5" pipes at 1333GPH to lower the friction coefficient to .05 and deliver the same amount of water as the 3" pipe.

Though 3" flex PVC is expensive, it costs less than six lengths of 1.5" pipe and takes less time to install. Whenever possible, larger diameter pipe pays off.

AREA OF PIPE:

 $1\frac{1}{2}$ " = 1.77 in² (0.75² π) 3" = 7.07 in² (1.5² π)

CIRCUMFERENCE OF PIPE:

1.5" Pipe = 4.71" 3" Pipe = 9.42"

One 3" pipe = Six 1¹/₂" pipes

FRICTION LOSS:

DECREASING TDH FOR LOW HEAD PUMPS

Total Dynamic Head is the combination of Friction Head, the restriction caused by the plumbing, and the Vertical Head, the height the water is pumped to. The lower the TDH, the higher the flow will be. The height of the feature is fixed, but eliminating friction is an easy way to increase flow without buying a bigger pump. Restrictive plumbing adds friction head, robs flow and tends to shorten pump life. Low head pumps should typically be plumbed with generous tubing to reduce friction and increase both flow and pump life. The Friction Loss Chart provides the optimal size tubing to eliminate excess Friction Head.

LOWER THE TDH = MORE FLOW LARGER PLUMBING = LESS TDH

INCREASING TDH FOR HIGH HEAD PUMPS

8000 gph through 3" = 0.05 ft of head loss per foot of tubing

1333 gph through 1.5" = 0.05 ft of head loss per foot of tubing

Lowering TDH is not always desired. Unlike low head pumps, high head pumps usually require a minimum amount of head to function. Too little TDH will lead to overspeeding, overheating and cavitation, which can destroy both motor and impeller. If the pump you want to use will be happier at a higher TDH, install a ball valve on the

discharge line to restrict the flow and raise the head pressure into the recommended operating range. (Note that Head is the same as pressure; every one foot of Head equals .433 psi, but Head Height is a lot easier to visualize than pounds per square inch!)

COST TO RUN A PUMP

Take what you pay per kilowatt per hour, multiply that by the wattage of the pump and divide by 1000. For the monthly cost, multiply the hourly cost by 720, 24 hours per day times 30 days in a month. For more information, visit the College of Pumps in our online University, www.atlantic-oase.com/university.

COST PER HOUR = \$ _____ kW x ____ Watts ÷ 1000 = _____ x 720 = _____ COST PER MONTH

Example: Electric costs \$0.10 per kW, the pump draws 100 Watts, so \$0.10 kW x 100W ÷ 1000 = \$0.01/hr x 720hrs/mo = \$7.20/month

